Constitutive aneuploidy and genomic instability in the single‐celled eukaryote Giardia intestinalis

نویسندگان

  • Pavla Tůmová
  • Magdalena Uzlíková
  • Tomáš Jurczyk
  • Eva Nohýnková
چکیده

Giardia intestinalis is an important single-celled human pathogen. Interestingly, this organism has two equal-sized transcriptionally active nuclei, each considered diploid. By evaluating condensed chromosome numbers and visualizing homologous chromosomes by fluorescent in situ hybridization, we determined that the Giardia cells are constitutively aneuploid. We observed karyotype inter-and intra-population heterogeneity in eight cell lines from two clinical isolates, suggesting constant karyotype evolution during in vitro cultivation. High levels of chromosomal instability and frequent mitotic missegregations observed in four cell lines correlated with a proliferative disadvantage and growth retardation. Other cell lines, although derived from the same clinical isolate, revealed a stable yet aneuploid karyotype. We suggest that both chromatid missegregations and structural rearrangements contribute to shaping the Giardia genome, leading to whole-chromosome aneuploidy, unequal gene distribution, and a genomic divergence of the two nuclei within one cell. Aneuploidy in Giardia is further propagated without p53-mediated cell cycle arrest and might have been a key mechanism in generating the genetic diversity of this human pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquiti...

متن کامل

New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays.

In this study, nine organic sediment samples from a medieval archaeological site at Pineuilh, France, were examined for Giardia intestinalis using two commercially available immunological kits [enzyme-linked immuno sorbent and immunofluorescence (IFA) assays]. Both techniques detected G. intestinalis in one sample, dated to 1,000 Anno Domini. This is the first time IFA was successfully used to ...

متن کامل

Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of euka...

متن کامل

Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis

Non-protein-coding RNAs represent a large proportion of transcribed sequences in eukaryotes. These RNAs often function in large RNA-protein complexes, which are catalysts in various RNA-processing pathways. As RNA processing has become an increasingly important area of research, numerous non-messenger RNAs have been uncovered in all the model eukaryotic organisms. However, knowledge on RNA proc...

متن کامل

Comparative Cell Biology and Evolution of Annexins in Diplomonads

Annexins are multifunctional, calcium-binding proteins found in organisms across all kingdoms. Most studies of annexins from single-celled eukaryotes have focused on the alpha-giardins, proteins assigned to the group E annexins, expressed by the diplomonad Giardia intestinalis. We have characterized the annexin gene family in another diplomonad parasite, Spironucleus salmonicida, by phylogeneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016